Journal of Organometallic Chemistry, 389 (1990) C23-C25 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20931PC

Preliminary communication

Synthesis of organomercury-platinum complexes by reaction of platinum hydrides with organomercurials

Andreas Handler, Paul Peringer *

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

and Ernst P. Müller

Institut für Organische und Pharmazeutische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

(Received February 23rd, 1990)

Abstract

 $[Pt(pp_3-P,P',P'',P''')H]O_3SCF_3$ and $[Pt(np_3-N,P,P',P'')H]O_3SCF_3$ (pp_3 = $P[CH_2CH_2PPh_2]_3$, np_3 = $N[CH_2CH_2PPh_2]_3$) have been shown to react with phenylmercury hydroxide to give $[PhHgPt(pp_3-P,P',P'',P''')]O_3SCF_3$ and $[PhHg(np_3-N,P,P',P'')]O_3SCF_3$, which have been characterized by ³¹P, ¹⁹⁵Pt and ¹⁹⁹Hg NMR spectroscopy.

Organomercury-platinum complexes involving a R-Hg-Pt linkage are stable when R is a strongly electronegative group (e.g. CF_3 or C_6F_5) [1,2] or when there is steric crowding near the platinum-mercury bond. Otherwise, extrusion of elemental mercury gives organoplatinum compounds [1]. The steric crowding mentioned above may originate either from the organic group attached to mercury (e.g. aryl groups with methyl [2] or chlorine [3-5] substituents in the 2- and 5-positions) or from the ligands coordinated to platinum. In the case of [MeHgPt(np₃-N,P,P',P'')] BPh₄ (np₃ = N[CH₂CH₂PPh₂]₃), it was the steric effect of the phenyl groups of the np₃ ligand which was thought to stabilize the Me-Hg-Pt linkage [6].

All organomercury-platinum complexes have previously been prepared by the reaction of R_2Hg [1-4] or RHgX (X = halogen) [5,7,8] with 14-electron or 16-electron zero-valent platinum intermediates. Most of the reactions involved [Pt(PPh_3)_2] generated either from [Pt(PPh_3)_3] [1,2,7,8], or from [Pt(PPh_3)C_2H_4] [3-5], but one reaction involved [Pt(np₃-P,P',P'')] generated from [Pt(np₃-P,P',P'')(PPh_3)] [6].

We describe the preparation of organomercury-platinum complexes by the reaction of platinum hydrides with organomercury compounds. This method has been used for the synthesis of $[RHgPt(pp_3-P,P',P'',P''')]O_3SCF_3$ ($pp_3 = P[CH_2CH_2PPh_2]_3$), for which no zero-valent platinum precursor is available.

	1	2	
$\overline{\delta(P_A)}$	36.3 d	26.3	
$\delta(P_{\rm B})$	155.9 q		
$\delta(195)$ Pt)	- 5598 dq	– 4155 q	
δ(¹⁹⁹ Hg)	2066 dq	1479 q	
$J(\mathbf{P}_{\mathbf{A}} - \mathbf{P}_{\mathbf{B}})$	7		
$^{1}J(Pt-P_{A})$	2891	3135	
$^{1}J(Pt-P_{B})$	1793		
$^{2}J(Hg-P_{A})$	187	161	
$^{2}J(\text{Hg}-\text{P}_{\text{B}})$	1460		
$^{1}J(\text{Hg-Pt})$	4322	5483	

Table 1 NMR data ^a

^{*a*} Notation: $P_B[CH_2CH_2P_APh_2]_3$, $N[CH_2CH_2P_APh_2]_3$; d = doublet, q = quartet; chemical shifts in ppm relative to 85% H₃PO₄, aqueous 1 *M* Na₂PtCl₆ and aqueous Hg(ClO₄)₂ (1 mmol HgO/mL 60% HClO₄); coupling constants in Hz; solvent CH₂Cl₂/MeOH 2/1; *T* = 223 K.

The reaction between $[Pt(pp_3-P,P',P'',P''')H]O_3SCF_3$ [9] and phenylmercury hydroxide in $CH_2Cl_2/MeOH$ at ambient temperature gave $[PhHgPt(pp_3-P,P',P'',P''')]O_3SCF_3$ (1), as shown in eq. 1:

$$\begin{bmatrix} Ph_2 P \\ Ph_2 P \\ Ph_2 P \\ H \end{bmatrix} CF_3SO_3 + PhHgOH \longrightarrow \begin{bmatrix} Ph_2 P \\ Ph_2 P \\ Ph_2 P \\ H \end{bmatrix} CF_3SO_3 (1)$$

Product 1 was characterized by ³¹P, ¹⁹⁵Pt, and ¹⁹⁹Hg NMR spectroscopy. The ³¹P NMR spectrum shows an AM₃ spin pattern consisting of a quartet and a doublet attributable respectively to the central and the terminal phosphorus atoms of the pp₃ ligand. Both signals have satellites due to one-bond Pt-P and two-bond Hg-P couplings. The Hg-P *cis*- and *trans*-couplings differ by an order of magnitude as previously observed [3–5]. The ³¹P chemical shift for the central phosphorus atom of the pp₃ ligand and the ¹⁹⁵Pt shift are remarkably large. The NMR data are listed in Table 1.

 $[Pt(np_3-N,P,P',P'')H]O_3SCF_3$ [10] reacts analogously with organomercurials, as illustrated in eq. 2:

$$\begin{bmatrix} & & & \\ Ph_2 P, & & \\ Ph_2 P, & & \\ Ph_2 P, & & \\ H \end{bmatrix} CF_3 SO_3 + PhHgOH \longrightarrow \begin{bmatrix} & & & \\ Ph_2 P, & & \\ HgPh \end{bmatrix} CF_3 SO_3 (2)$$

The NMR data for 2 are included in Table 1, and are similar to those for [MeHgPt((np_3-N,P,P',P'')]BPh₄, which was prepared from [Pt(np_3-P,P',P'')PPh₃] and MeHgCl [6]. A comparison of the NMR data for 1 and 2 reveals marked differences in the ¹⁹⁵Pt and ¹⁹⁹Hg shifts. The Hg-Pt coupling in 1 is smaller than that in 2 in keeping with the relative *trans* influences of N- and P-donor ligands.

Preliminary experiments indicate that platinum hydrides react with other mercury complexes and also with compounds of other metals to give heterobimetallic systems.

References

- 1 V.I. Sokolov, V.V. Bashilov and O.A. Reutov, J. Organomet. Chem., 97 (1975) 299.
- 2 V.I. Sokolov, V.V. Bashilov and O.A. Reutov, J. Organomet. Chem., 111 (1976) C13.
- 3 O. Rossell, J. Sales and M. Seco, J. Organomet. Chem., 236 (1983) 415.
- 4 M. Crespo, O. Rossell, J. Sales and M. Seco, J. Organomet. Chem., 273 (1984) 415.
- 5 J. Calvet, O. Rossell and M. Seco, Transition Met. Chem., 9 (1984) 208.
- 6 C.A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini, G. Scapacci and D. Dakternieks, J. Chem. Soc., Chem. Commun., (1989) 1686.
- 7 O.A. Reutov, V.I. Sokolov, G.Z. Suleimanov and V.V. Bashilov, J. Organomet. Chem., 160 (1978) 7.
- 8 G.Z. Suleimanov, V.V. Bashilov, A.A. Musaev, V.I. Sokolov and O.A. Reutov, J. Organomet. Chem., 202 (1980) C61.
- 9 [Pt(pp₃-P,P',P",P")H]BPh₄ has been previously reported: P. Brüggeller, Inorg. Chim. Acta, 129 (1987) L27.
- 10 [Pt(np₃-N,P,P',P'')H]BPh₄ has been previously mentioned: S. Midollini et al., to be published as quoted in C.A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini and J.A. Ramirez, J. Chem. Soc., Chem. Commun., (1989) 304.